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The proper orthogonal decomposition technique (Lumley’s decomposition) is applied 
to the turbulent flow in a channel, to extract coherent structures by decomposing the 
velocity field into characteristic eddies with random coefficients. In  the homogeneous 
spatial directions a generalization of the shot-noise expansion is used to determine 
the characteristic eddies. I n  this expansion the Fourier coefficients of the 
characteristic eddy cannot be obtained from second-order statistics. Three different 
techniques are used to determine the phases of these coefficients: (i) a technique 
based on the bispectrum, (ii) a spatial compactness requirement, and (iii) a functional 
continuity argument. Results from these three techniques are found to be very 
similar. The implications of these techniques and the shot-noise expansion are 
discussed in the Appendix. The dominant eddy is found to contribute as much as 
76 % to the turbulent kinetic energy. In  two and three dimensions, the characteristic 
eddies consist of an ejection region straddled by streamwise vortices which leave the 
wall in a very short streamwise distance of approximately 100 wall units. 

1. Introduction 
The general recognition of the existence of organized motions or eddies in 

turbulent shear flows can be traced to the works of Theodorsen (1952) and Townsend 
(1956) over three decades ago. I n  the past twenty years a great deal of insight has 
been gained into the characteristics of organized structures in turbulent shear flows 
primarily by means of flow visualization and conditional-sampling techniques (see 
Cantwell 1981). Some combined flow visualization and quantitative techniques (e.g. 
Kline et al. 1967 ; Falco 1977) have demonstrated the significance of certain events 
(e.g. bursting process) or structures in the turbulence production mechanism. 

Unfortunately, the present knowledge of organized motions has seldom been used 
in turbulence theories or quantitative models of turbulence. This is in part due to the 
lack of a quantitative definition of organized structures and an objective means for 
assessing their contribution to turbulence stresses, particularly their importance in 
the production of turbulence. In  addition, most flow visualization studies have been 
carried out at low Reynolds numbers where the limited range of turbulence scales 
makes i t  easier to identify organized motions. Much of our knowledge of coherent 
motions is limited to those structures that can be Seen in flow visualization 
experiments. It is desirable to have the means to extract coherent motions from fields 
and evaluate their contribution to  turbulence statistics, regardless of how chaotic the 
fields are. 

The need for quantitative descriptions of organized structures has led to the use 
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of statistical techniques. One method, used by Townsend (1956), Grant (1958) Perry 
& Chong (1982) and others, is to examine measured two-point correlation profiles for 
their consistency with a proposed structural model. Owing to insufficient experi- 
mental data, the conformity of the models with all the components of the two- 
point correlation tensor has never been investigated. The data are usually deficient 
in the number of components of the tensor or directions of probe separation. 
Extrapolation from this insufficient data can lead to confusion. For example, Moin 
& Kim (1985) have shown that the ability to  infer structural information from the 
two-point correlation profiles is highly dependent on the direction of probe 
separation. Casual inspection of two-point correlation profiles can also be misleading 
since one is seeking to extract information on the velocity vector from a tensor. 

The conditional or phase-averaging techniques (e.g. the VITA technique of 
Blackwelder & Kaplan 1976) are statistical methods designed to obtain the average 
structure that satisfies a prescribed condition, usually a t  a single point. The difficulty 
with conditional sampling methods is that the prescribed conditions are generally ad 
hoc and their relevance to actual flow conditions is unclear. Moreover, Adrian & Moin 
(1988) have shown that the two-point correlation tensor provides a good estimate of 
conditional velocity fields. Thus, in the neighbourhood of the point a t  which the 
conditions are specified, the conditionally averaged velocity can be extracted from 
the information contained in the correlation tensor. 

Most statistical techniques for extraction of organized structures from turbulent 
flows will produce a ‘structure’ from virtually any stochastic field, whether or not 
structures of interest are in the field. Thus, the association of statistically derived 
structures with instantaneous events of dynamic importance must be predicated on 
independent knowledge that dynamically significant structures do exist. The result 
of any such statistical technique is an ensemble uveraged structure or flow pattern. 
This flow pattern is often confined to  a small section of the flow domain with the 
surrounding structures averaged out, and the inherent symmetries in the statistics 
impose ‘ artificial ’ symmetries on the resulting structures. Moreover, the interfaces of 
these structures are generally smeared compared to the edges of instantaneous flow 
structures. Therefore, averaged structures most likely do not resemble the 
instantaneous flow structures in detail. The fundamental question is whether the 
structures deduced by statistical techniques are relevant. This question will be 
addressed in $6, here we point out that  for modelling purposes, one generally is not 
interested in every detail of the instantaneous structures and the ensemble averaged 
structure may indeed be what is needed. 

In  1967 Lumley proposed a mathematically attractive definition of organized 
structures and a statistical method for their extraction from stochastic turbulent 
velocity fields. The method is based on the decomposition of the fluctuating velocity 
field into a sum of mutually orthogonal eigenfunctions of the two-point correlation 
tensor, weighted by random coefficients. The dominant (most energetic) eddy is 
defined to be the eigenfunction with the largest eigenvalue. The Karhunen-Loeve 
expansion (Loeve 1955; Papoulis 1965) is used in directions in which turbulence is 
statistically inhomogeneous. This decomposition has also been used for meteoro- 
logical mapping (Obled & Creutin 1986) and for data compaction and reduction 
(Ahmed & Rao 1975). An important feature of this decomposition, which results 
from its orthogonality properties, is that  the contribution of the extracted eddies to 
second-order turbulence statistics can be determined. 

There has been scepticism that the long-time averaged, unconditioned two-point 
correlation tensor used in proper orthogonal decomposition can retain information 
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about the highly intermittent unsteady structures which have been observed in 
turbulent wall layers. If a structure, no matter how intermittent, contributes a 
majority of the total integrated energy or Reynolds stress, then it will dominate the 
two-point correlation statistics and therefore information about the structure will be 
retained in the correlation tensor. In  fact, it  has been shown (Adrian, Moin & Moser 
1987) that linear estimates of classical conditional averages (quadrant II), which are 
computed from the two-point correlation tensor, are in excellent agreement with the 
actual conditional averages. Thus conditional averaging of this type yields little 
information which is not available from the two-point correlation tensor. However, 
if there are several dominant structures with comparable energy, the situation is not 
clear, and the two-point correlation tensor may not provide adequate information 
about the structures. Of course, methods for extracting structures from the two- 
point correlation tensor also suffer from the same difficulties as other statistical 
methods (e.g. smearing and artificial symmetries). Also, we shall see in $4 that 
characteristic-eddy decomposition as formulated here is not unique and that 
external information must be supplied to uniquely determine the Fourier phase 
coefficients of the resulting characteristic eddies. 

Although Lumley’s proposal dates back twenty years, it has not been evaluated 
thoroughly owing to a lack of the necessary experimental data; the complete two- 
point correlation tensor with a t  least one direction of probe separation is required. 
Payne (1966) and Bakewell & Lumley (1967) were the first to apply this technique. 
Payne (1966) used the two-point correlation measurements of Grant (1958) in the 
wake of a circular cylinder. Grant measured only the diagonal elements of the two- 
point correlation tensor, R,, (a  = 1,2,3) a t  three fixed positions. The remaining off- 
diagonal correlations were obtained using the mixing-length assumption and the 
equation of continuity. The energy content of the dominant extracted eddy was not 
significantly larger than that of the next eigenfunction in the hierarchy. Owing to 
anomalies in the results, particularly the presence of some negative eigenvalues 
(which represent the energy content of eddies), these results cannot be considered 
conclusive. Bakewell & Lumley (1967) applied a simplified version of the 
decomposition theorem to obtain the most energetic eddy structure in the wall region 
(y’< 40) of a turbulent pipe flow. The two-point correlation of the streamwise 
velocity component, Rl l (rz ) ,  was measured and decomposed. The other velocity 
components of the large eddy were obtained using the mixing-length assumption and 
the equation of continuity. They reported that the largest eddy carries over 90 % of 
the total streamwise turbulent intensity. Moin (1984), who performed the 
decomposition in only one and two dimensions, was the first to make use of the full 
correlation tensor. The correlation tensor was obtained from a numerical simulation 
of turbulent channel flow which made use of a turbulence model to account for the 
unresolved portion of the turbulence (large-eddy simulation). As in the previous 
studies, Moin found that the dominant eddy carried much of the turbulent kinetic 
energy (as much as 64%). Recently, Glauser, Leib & George (1985) applied the scalar 
decomposition to the streamwise turbulent velocity-fluctuations-in an axisymmetric 
turbulent jet. Their results indicate that the dominant eigenfunction carries about 
40 % of the total streamwise turbulent intensity integrated across the layer. 

In recent work by Herzog (1986), the correlation tensor Rap was measured in a pipe 
for a,P = 1 and 3, the rest of the tensor was reconstructed from the continuity 
equation. These very ambitious experiments have produced the most comprehensive 
application of proper orthogonal decomposition to an experimental wall-bounded 
flow, and are the experiments most directly comparable to the current results. 
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Herzog’s measurements were taken in a small subdomain near the wall, thus they are 
similar to the near-wall domain decomposition discussed in $5. There are some 
quantitative differences between Herzog’s and the present results. Possible causes for 
these differences are outlined below. First, Herzog measured the correlation tensor a t  
only six points in the y- and z-directions and seven points in the x-direction ; this 
probably provides an inadequate number of degrees of freedom for the decomposition 
(see discussion a t  the end of 93). Further, the spatial resolution of the measured 
correlation tensor varied greatly in the x- and z-directions, with good resolution for 
small separations (Ax+ = 19 and Az+ = 9) and progressively coarser resolution for 
larger separations (2’ > 40 and z+ > 20). This necessitated the use of curve-fits to 
obtain representations of the correlation tensor which could be Fourier transformed. 
Second, in Herzog’s experiment, the correlation was measured using multiple hot- 
film probes. To preserve the mathematical properties of the correlation tensor, these 
probes must have identical responses. The fact that they were not identical resulted 
in some of the eigenvalues being negative, though this was not as serious as in the 
results of Payne (1966). The use of multiple probes can also lead to probe interference 
problems. Herzog minimized probe interference by using small probes with slender 
carriers, but it is still a concern, especially for small spatial separations. Finally, the 
correlations used for the current results were estimated from a smaller statistical 
sample than in the experiments, which could lead to some differences due to statistical 
errors. The impact of these difficulties is not clear. The current results and the results 
of Herzog are largely in agreement ; for example, Aubry & Keefe (1987) found that 
the individual eigenfunctions they examined were quite similar in shape. However, 
there are some significant differences (see 993 and 5 ) .  The extent to which the 
differences are caused by the cited difficulties is a matter of speculation. Other 
potential causes of these differences are the difference between a pipe and channel, 
and the fact that Herzog’s pipe flow was not fully developed. 

The objective of the present work is to  extract the characteristic eddies, as defined 
by Lumley’s decomposition, in fully developed turbulent channel flow and measure 
their contribution to turbulence statistics. The characteristic eddies are those with 
maximal contribution to turbulent kinetic energy, but the theory does not maximize 
their contribution to the turbulence production mechanism (i.e. Reynolds shear 
stress). One of the results of this study is the contribution of the extracted eddies to 
the turbulent shear stress profile. 

A major difficulty with the decomposition technique is the treatment of the 
homogeneous directions, in which the Karhunen-Loeve decomposition is not useful. 
Lumley (1981) proposed using a generalization of the shot-noise decomposition (Rice 
1944). However, there is considerable arbitrariness in the specification of this 
decomposition. In  Lumley’s approach, the magnitudes of the Fourier coefficients of 
the decomposition are found easily, but the phases are more difficult. Lumley (1981) 
recommends using the third-order moments in the form of the bispectra to recover 
the phases. This proposal has not previously been implemented. One of the objectives 
of this study is to  use additional statistical data to  retrieve the phase information and 
compare the characteristics of the dominant structure to those obtained with other 
techniques. Some of the implications of using different specifications of the shot-noise 
decomposition have also been studied. 

The necessary statistical data are obtained from a database generated by direct 
numerical simulation of turbulent channel flow (Kim, Moin & Moser 1987). This 
database consists of instantaneous three-dimensional velocity and pressure fields 
collected at widely separated flow times. Calculations were performed a t  Reynolds 
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number 3200 based on the centreline velocity, U,, and channel half-width, 6. The 
channel centreline corresponds to y+ = yu,/v = 180, where u, = ( ~ , / p ) i  is the wall 
shear velocity. The computations were carried out with 128 x 129 x 128 grid points 
in the x-, y- and z-directions respectively. The mean flow is in the x-direction and y 
is in the direction normal to the walls. Total averaging time was about 1906/U,. The 
physical realism of the data has been verified by detailed comparison of statistical 
correlations and both instantaneous and conditionally averaged flow patterns with 
available experimental data. 

In $2 the procedure for calculation of the two-point spectral-density tensor is 
outlined. In $ 3  the inhomogeneous turbulence decomposition or Karhunen-Loeve 
expansion in the direction normal to the walls and its computational implementation 
is presented. In $4 the theoretical aspects of the shot-noise decomposition in the 
homogeneous directions are discussed. The characteristic eddy decomposition is 
applied in two and three dimensions in $ 5 ,  and the structure of resulting dominant 
eddies are examined, followed by conclusions and a general discussion in $6. 

2. Calculation of two-point spectral-density tensor 
Application of the orthogonal decomposition theorem to turbulent channel flow 

with one direction of flow inhomogeneity and two homogeneous directions requires 
the knowledge of the two-point spectral-density tensor. This tensor is calculated 
from the direct simulation database described in $ 1. The Karhunen-Loeve expansion 
requires the two-point velocity-correlation tensor, 

R&,, y f Y' r z )  = <U&> Y , 2, t )  Uj(" + T X  f y', z + Tzr tf) I (2.1) 

where ui (i = 1,2,3) are the instantaneous turbulent velocity fluctuations in the 
streamwise, x, normal, y, and spanwise, z, directions respectively. The ( ) denotes 
ensemble average which, owing to flow homogeneity in x- and z-directions, is 
calculated by averaging in (x,z)-planes as well as in time. It is actually more 
convenient to compute and use the two-point spectral-density tensor cDil(k,, y ,  y', k,) 
which is the Fourier transform of the two-point correlation tensor in rx  and r x ,  that is 

where k, and k, are the wavenumbers in the x- and z-directions. 

velocity field has been computed : 
For computational purposes, the discrete Fourier transform of each instantaneous 

The two-point spectral density is obtained from 

(2.4) 
1 N t  

Y R-1 
@ij(kx, y ,  y', k,) = - C &,(kx, y ,  k,, t , )  &T(kx, y', k,, trz), 

where 4 is the number of instantaneous flow fields used for ensemble averaging and 
* denotes complex conjugate. Since ai, is the Fourier transform ofRij, a real function, 
it is conjugate symmetric, 

I6 FLM 20U 
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The Navier-Stokes equations, and the boundary conditions in the channel flow are 
invariant with respect to two coordinate transformations, a reflection in the z- 
direction ( z  mapped to - z  and w becomes -w), and a reflection in the y-direction 
about the centreline. For each velocity field in the ensemble, the velocity field 
obtained by any combination of these reflections is also included in the ensemble, 
since they are equally valid solutions of the Navier-Stokes equations. This effectively 
quadruples the statistical sample and exactly enforces the following two symmetries 
in Qcr (y = 0 at the centreline): 

@ij(k,, y, y‘, kz) = f @cj(k,, -Y, -y’, kz), (2.6a) 

@ij(kx, 97 $7 kz) = * Qtj (ks> y, Y‘, -kz)- (2.6b) 

In (2.6a) the minus sign is used for i = 2 or j = 2 but not both, while in (2.6b), the 
minus sign is used for i = 3 o r j  = 3 but not both. The symmetry in (2.6b) also results 
in a factor-of-two reduction in the computation required to perform the proper 
orthogonal decomposition in three dimensions. Finally, Gir has the following 
symmetry due to its definition : 

@ij(k,, y, Y‘, kz) = @;(k,, Y’, Y, kz). (2.7) 

These symmetries, and others which can be derived by combining them, will be used 
throughout the sections that follow. 

3. The Karhunen-Loeve expansion in the inhomogeneous direction 
A preliminary evaluation of the decomposition theorem can be performed by 

using the decomposition of the correlation tensor, Rii(y, y’), for two points separated 
only in the inhomogeneous direction (y). This decomposition, known as the 
Karhunen-Loeve expansion (Loeve 1955 ; Papoulis 1965), is the foundation of the 
characteristic-eddy decomposition for multiple dimensions presented in the next 
section. Note that while the decomposition may be performed in one or more 
dimensions, the underlying turbulent flow is always three-dimensional and time 
dependent. The material presented below leading to equations (3.1)-(3.7) can be 
found in Lumley (1970). It is presented here for continuity. 

Let vi(y) be a random vector function on a finite domain D .  Given an ensemble of 
realizations of vi, we wish to determine a deterministic vector function (or organized 
structure), q5i(y), that has the highest possible mean-square correlation with the 
members of the ensemble. That is, we wish to find q5i(y) that maximizes the ensemble 
average of the magnitude squared of the quantity 

JDVAY)I:(Y)dY 

( I D  M Y )  m y )  dYY 

a =  1 ’  (3.1) 

Unless otherwise stated, in this paper the summation convention is implied for 
repeated indices. Note that in the above inner product only the shape and not the 
magnitude of q5i is considered. It can be shown (Lumley 1970) by the methods of 
calculus of variation that the desired r$ is a solution (eigenfunction) of 

r 
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where R%j = (vi(y)v,(y')) is the two-point correlation function and ( ) denotes 
ensemble average. It can be shown that (3.2) does not have a unique solution ; instead 
there is a denumerable infinity of solutions, $in)(y), which can be normalized such 
that r 

Orthogonality implies that structures of different order do not interact with each 
other in their contribution to second-order statistics. Each eigenfunction $j")(y) is 
associated with a real positive eigenvalue A@), and the eigenfunctions form a 
complete set. That is, the random vector field vi, can be reconstructed from the 
eigenfunctions 

(3.4) %(Y) = c a, $inYYIj  
n 

where coefficients of different order are uncorrelated, 

Equation (3.4) is interpreted as the decomposition of the stochastic field wi into 
deterministic elements (or eddies) with random coefficients. It is expected that more 
deterministic velocity fields will be more efficiently represented by the expansion 
(3.4). An important consequence of (3.5) is that the contribution of each structure to 
the turbulent kinetic energy and turbulence stresses can be determined : 

and (3.7) 

where E is the total turbulence kinetic energy in the domain. The eigenvalues A(") 
thus represent the contribution of each structure to the total turbulent kinetic 
energy. 

It should be pointed out that the Karhunen-Loeve expansion can be formulated 
for any subdomain, y1 < y < yu. In  this case the limits of the integrals in (3.2), (3.3) 
and (3.7) are changed to y1 and yu and the eigenfunctions represent the characteristic 
structures in that subdomain. The division of the full domain of interest into two or 
more smaller regions may be advantageous for the convergence of the expansion and 
provide the means for further dissection of the flow field in a given region. For 
example, in turbulent boundary layers we may wish to find the characteristic 
structures in the wall and outer layers separately, rather than search for one global 
structure for the entire flow. This is consistent with the general treatment of the 
problem of multiple scales in turbulent boundary layers. 

The above formalism is applied to the three-dimensional time-dependent velocity 
field, ut(x,y,z,t),  in turbulent channel flow. Our aim is to find the optimum 
representation, in the statistical sense outlined above, of the velocity field in the 
direction y normal to the walls. That is, given the velocity profiles u,(y) a t  all the 
(2, z)-locations and at all times, we seek deterministic functions that optimally 
represent the y-variation of the velocity field. The desired $i are obtained by 
substituting into (3.2) the two-point correlation tensor Rii(y, y') defined in (2.1) with 

16-2 
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rr. = r, = 0. The integral equation (3.2) is solved numerically. The numerical 
approximation to the integral in (3.2) is given by 

P .  Moin and R. D. Moser 

where f i  is the value off a t  a discrete grid point and w is the weight function for the 
particular quadrature method used. I n  the present work we have used the 
trapezoidal rule with up to N = 129 non-uniformly spaced grid points for the entire 
domain, - 1 ,< y < 1. The grid points are given by 

(j= 1,2 ,..., N ) .  

The numerical approximation of the integral in (3.2) leads to an algebraic eigenvalue 

where A is a 3Nx 3N matrix and 

is the discretized nth eigenvector (of dimension 3 N ) ,  with $?)(i) the streamwise 
component of the nth eigenfunction at the i th grid point. Because of the use of non- 
uniformly spaced grid-points, A is not symmetric. However, a simple scalin 
transformation usin the diagonal matrix with the diagonal, D = [(wl)i, (wl)4, ( w , ) ~ ,  
. . . , (wN)i ,  (wN) i ,  (wN)3)]  transforms (3.9) into a symmetric eigenvalue problem. 

The numerical integration in (3.8) could have also been done using the Chebyshev 
polynomial representation used in the simulations of Kim et uZ. (1987), which would 
have been more accurate. The trapezoidal rule was selected because it allows much 
greater flexibility in solving the problem in subdomains. Use of the trapezoidal rule 
is justified because the correlation tensor is much smoother than the instantaneous 
velocity fields. 

It can be easily proven that the discrete system (3.9) preserves all the essential 
properties of its continuous counterpart given by (3.2), all the eigenvalues are real 
and positive, the eigenvectors are orthonormal when the discrete analogue of (3.3) is 
formed using the same quadrature rule used to approximate the integral in (3.2). I n  
addition, the relations (3.4)-(3.7) are also exactly satisfied when the discretized 
instantaneous velocity fields are represented in terms of the eigenvectors of A. These 
properties serve as a good check of the computer implementation of the method. It 
can also be shown for both the analytical and numerical problem that the 
eigenfunctions will satisfy the same boundary conditions as the velocity and that in 
the three-dimensional decomposition (see $4) the eigenfunctions will satisfy 
continuity (including av/ay = 0 a t  the wall). 

In  this paper the eigenvalues will be arranged in descending order with h(l) as the 
largest eigenvalue. We shall refer to  $(l) as the 'dominant' eigenfunction or eddy. 
Whether @(l) is indeed dominant depends on the magnitude of h(l) relative to the 
magnitude of the remainder of the eigenvalue spectrum. This must be determined 
from the computations. For the one-dimensional formulation discussed in this 
section the spanwise component of each eigenfunction, @P), is uncoupled from its 
streamwise and normal components. This is a reflection of the fact that for (i = 1,2), 
R3i, Rt3 are zero Therefore, in the remainder of this section, $:*) denotes the spanwise 
component of the mth eigenfunction with zero streamwise and vertical components, 

F 
B 
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FIGURE 1. First four one-dimensional eigenfunctions in the wall-to-centreline domain : -, 
streamwise velocity (u) ; . . . . . . , normal velocity (v); ---, spanwise velocity (w). (a) First, (b) 
second, (c) third and ( d )  fourth eigenfunction. 

and # and #$') denote the streamwise and vertical components of the Zth 
eigenfunction with zero spanwise component. However, when we refer to the total 
energy, E ,  it is the sum of all 3N of the eigenvalues. In the multidimensional 
formulation discussed in the next section all three components of each eigenfunction 
are fully coupled. 

The first four eigenfunctions for the domain extending from the wall to the 
centreline of the channel (0 < y+ < 180) are shown in figure 1. Note that the 
eigenfunctions are normalized to have a magnitude of unity, in accordance with 
(3.6); however, in figure 1, they are multiplied by to allow comparison of their 
relative contributions to turbulent stresses. The Karhunen-Loeve eigenfunctions 
generally behave in the same manner as other typical eigenfunctions, namely, the 
number of zero-crossings increases with the order of the eigenfunction. It is 
particularly significant that  the streamwise, @), and vertical, $p), components of 
the first three eigenfunctions have opposite signs throughout the domain and, hence, 
make a positive contribution to turbulence production. This is not the case for some 
of the higher-order eigenfunctions. It is also interesting that $P'(y) changes sign in 
the vicinity of the wall. A streamwise vortex located near the wall yields a spanwise 
velocity profile, w, that is similar to #p). 
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~ ~~ ~~ 

Domain N D  A(l)/E A(Z)/E A@) /E  A ( l ) / A ( Z )  pw/pct, 

0 < y+ < 40 29 0.61 0.15 0.08 4.2 1.03 
140 < y+ < 180 10 0.44 0.22 0.20 2.0 1.94 

0 < y+ < 180 65 0.32 0.16 0.08 2.0 0.66 
TABLE 1. Contributions of the one-dimensional eigenfunctions to energy and production 

The contributions of the first three eigenfunctions to the total turbulent kinetic 
energy (equation (3.7)) in three separate domains are shown in table 1.  The 
contribution of the dominant eigenfunction to  turbulent shear stress and hence 
turbulence production in each domain is indicated by the quantity P ( l ) / P ( t ) ,  where 
P(l) is the integral of the first term in (3.6) with i = 1 , j  = 2, 

p(1) = A(’) 1; $l‘)$$l) dy, 

and P@) is the integral of the total turbulence shear stress 

Pt) = ( u ,  u2) dy. 
J Y1 

For the domain extending from the wall to the channel centreline the dominant 
eigenfunction makes an appreciable contribution to the total turbulence kinetic 
energy, and its contribution to turbulence production is remarkably high. For the 
wall layer (y’ < 40) the contributions of the first eigenfunction to both turbulent 
kinetic energy and production are very significant. For all the cases tabulated the 
dominant eigenfunction’s contribution to  turbulence shear stress is significantly 
higher than its contribution to turbulent kinetic energy. Note that the first 
eigenfunction may contribute more than 100 YO of the Reynolds shear stress. While 
the formulation guarantees that convergence to the energy and the turbulence 
intensities is monotonic, there is no such guarantee for the Reynolds shear stress. In 
fact, the decomposition emphasizes the shear stress of the lower eigenfunctions, 
requiring higher-order eigenfunctions to contribute negatively to  the Reynolds shear 
stress. I n  contrast, Herzog (1986) obtained Reynolds shear stress contributions 
which were less than 100% and did converge monotonically. The reason €or this 
difference is not known (see the discussion of Herzog’s experiment in tj 1). 

The convergence of the Karhunen-Loeve (K-L) expansion for turbulence stresses 
as a function of the number of terms in (3.6) for the wall-to-centreline domain is 
shown in figure 2. Note that in this figure and the convergence plots shown in figure 
3 the solid curve labelled ‘total’ is the Reynolds stress taken from the direct 
numerical simulation of Kim et al. (1987). All velocities are non-dimensionalized with 
the wall shear velocity, u,. The high Reynolds shear stress content of the lower-order 
eigenfunctions is clearly evident. It appears that  approximately 10 terms in the 
expansion are required to  reproduce the turbulence stresses with a reasonable 
accuracy. Note that for this case the matrix A (equation (3.9)) is 195 x 195 and 
possesses 195 orthonormal eigenvectors. 

The convergence of the expansion in the wall-layer (y’ < 40) is shown in figure 3. 
The convergence is remarkably fast; three to five terms in (3.6) are sufficient to 
reproduce all the turbulence stresses. In  this case the matrix A is 87x87. The 
convergence of any expansion. in a subdomain is expected to be better than that in 
the entire domain. However, as shown in table 1 the Karhunen-Loeve expansion 
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FIGURE 2. Convergence of (a) ua, ( 6 )  vz, (c) w2 and (d) uv in the wall-to-centreline domain: -, 
total; . . . . . . , first eigenfunction: ---, sum of first (a) 5, ( 6 )  10, (c) 5 and ( d )  5 eigenfunctions; 
-.- , sum of first (a) 10, ( 6 )  20, (c) 10 and (d )  10 eigenfunctions. 

converges faster in the wall layer than in a subdomain of the same size away from 
the wall, despite the fact that turbulence quantities vary most rapidly in the wall 
region. A possible explanation for better convergence of the wall-layer eigenfunctions 
is that turbulence motions near a wall are more organized (deterministic) than outer- 
layer turbulence resulting in a larger projection a in (3.1). 

The disparity of scales between the wall and outer layer suggests that better 
convergence may be obtained if the entire domain is split into two or more regions 
and the eigenfunctions for each region calculated separately. To verify this assertion, 
the wall-to-centreline domain was split into the two parts, y+ < 40 and 40 < y+ < 180, 
and for each case (3.2) was solved. The sum of the contributions of the dominant 
eigenfunction from each region is 45% of the total kinetic energy as compared to 
32% when the domain was not split. No attempt was made to optimize the y -  
location at  which the domain was split. 

Each velocity component has an alternative expansion that can be obtained by 
solving (3.2) with only the autocorrelation of that velocity component. For example 
streamwise, eigenfunctions can be obtained from 

(3.10) 



482 P. Moin a d  R . D ,  Moser 

0 10 20 30 40 

Y +  

I .2 

0.4 // 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

1 .o 

0.8 

0.6 

(uv> 

0.4 

0.2 

10 20 30 40 
Y +  

0 10 20 30 40 
Y +  

0 10 20 30 40 

Y+ 

FIGURE 3. Convergence of (a )  u', ( b )  u2, ( c )  w 2  and (d )  uu in the near-wall domain: -, total; ----, 
first eigenfunction ; . . . . . . , sum of first (a)  3, ( b )  5 ,  (c) 3 and (d) 3 eigenfunctions ; -.-, sum of'first 
( a )  5, ( b )  10, (c) 5 and (d )  5 eigenfunctions. 

Such an expansion for each velocity component clearly has a faster convergence rate 
than the one obtained from the full decomposition. For example, (3.10) was solved 
for the near-wall domain, and the dominant eigenfunction's contribution is 74 YO of 
the total streamwise turbulent intensity. However, scalar decompositions for each 
component of the velocity fluctuations do not reveal any information about the 
contribution of the eigenfunctions to the Reynolds shear stress. 

Since the convergence of the Karhunen-Loeve expansion in representing energy is 
optimal, it  is of interest to see how its convergence compares with that of the 
Chebyshev polynomials which are used in performing direct numerical simulations. 
To that end, the streamwise velocity component was decomposed in the full domain 
from one wall to the other by obtaining the eigenvalues of (3.10). These are compared 
with the energy carried by partial sums of the Chebyshev polynomials in the 
representation of the streamwise velocity fluctuations. The power of the Karhunen- 
Loeve expansion is evident in the first term; the first eigenfunction carries 23 % 
of the energy, whereas the first Chebyshev polynomial carries only 4 %. However, 
when one considers the number of terms required to represent the energy to a 
given tolerance, the performance difference is not as impressive. For example, to 
represent 90% of the energy, 10 eigenfunctions and 12 Chebyshev polynomials are 
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required and to represent the energy to one part in lo3, 35 eigenfunctions and 42 
Chebyshev polynomials are needed. Thus the Karhunen-Loeve expansion is 
significantly advantageous if only one or two terms are to be retained ; however, for 
accurate simulations of the type performed by Kim et al. (1987), the small 
improvement in accuracy obtained by using the Karhunen-Loeve expansion would 
not offset the increased computational cost such a scheme would entail. 

Finally, one should be cautious in drawing conclusions regarding the convergence 
of the expansions when using too few grid points in (3.2) or measuring 4, at only a 
few points y .  This has often been the case in experimental measurements of two-point 
correlations (e.g. Herzog 1986). Eigenvectors of (3.9) form a basis for a space of 
vectors of dimensions 3ND, where ND is the number of grid points in the domain. Thus, 
the number of terms in (3.6) required to recover all the turbulent kinetic energy a t  
the grid points is always less than or equal to WD. One can be confident that a 
sufficient number of points has been used only if the number of terms required for 
convergence is significantly less than 3ND. Note that for scalar decompositions such 
as (3.10) the corresponding turbulent intensity a t  the grid points is recovered (by 
default) with less than or equal to ND terms in the expansion. In table 1 the number 
of grid points in each domain is shown. 

4. Theory of characteristic eddies in multiple dimensions 
The one-dimensional Karhunen-Loeve expansion described in $ 3  provided some 

guidance to the significance of the ‘dominant ’ eigenfunction. The merit of this 
decomposition is evident in the wall layer where the dominant eigenfunction is 
indeed the major contributor to turbulence kinetic energy and production. However, 
eigenfunctions in one dimension do not represent eddies; and application of the 
decomposition method to the problem of identifying organized structures in 
turbulent flows requires its implementation in more than one dimension, so that the 
shape of the extracted eddy as well as its contribution to turbulent stresses can be 
determined. In this section we consider the theoretical foundations of the three- 
dimensional decomposition, with two spatial directions (x and z )  homogeneous. A 
two-dimensional decomposition can be developed similarly. 

For the three-dimensional case we wish to determine the eigenfunctions of the 
three-dimensional two-point correlation tensor R(rx ,  y, yf, r,) ,  where rx and rZ are 
separations in the homogeneous directions x and x .  Since the Karhunen-Loeve 
eigenfunctions in homogeneous spatial directions are the Fourier functions (Lumley 
1981), we can equivalently consider the following eigenvalue problem : 

where @$, is the spectra1;density tensor discussed in $2. The Karhunen-Loeve 
eigenfunctions are then q5t(kx, y ,  k,) exp (ik,s+ik,z). These are not acceptable as 
characteristic eddies because the Fourier functions are not local in space, and we 
expect the eddies to be spatially compact. Moreover, the Fourier eigenfunctions are 
the eigenfunctions for any statistically homogeneous system so they do not reflect 
properties related to turbulence structure. The homogeneous spatial directions 
require a different treatment which, following Lumley (1981), will be based on a 
generalization of the shot-noise decomposition (Rice 1944). 

The eigenfunctions of (4.1) have all the properties of the eigenfunctions developed 
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in $3. In particular eigenfunctions of different order are orthogonal and they can be 
normalized so that 

(4.2) Sdj“)(k,, y, k,) ~tm)*(kz, y, k,) dy = Snm, 

and the Fourier transform of the velocity field can be reconstructed from the 
eigenfunctions with random uncorrelated coefficients 

and 

(4.3a) 

(4.3b) 

Note that thelnormalization condition (4.2) sets the magnitude of the complex 
eigenfunction q5$ but leaves the phase unspecified ; the phases may be set arbitrarily. 

To obtain the shot decomposition in the homogeneous directions, consider the first 
term in (4.3) for each k, and k,: 

4 l ) ( k Z ,  y,kz) = Ci.,(k,, k,) dI’)(k,, y, kZ)’ (4.4) 

which is the ‘dominant’ term of the inhomogeneous decomposition, and has the 
maximum contribution to the kinetic energy at each wavenumber. Equation (4.4) 
can be inverse Fourier transformed to obtain 

u{l)(x,y,z) = q5~1)(~-x’,y,~-z’)al(x’,z’)dx’dz’. (4.5) s 
The inverse transform of the coefficients Ci, is a, which can be interpreted as a 
stochastic process in the homogeneous spatial directions, and the deterministic 
function q5i1) is the inverse transform of the first eigenfunctions for each wavenumber. 
This is the form of the generalized shot decomposition, in which the deterministic 
function #jl) would be interpreted as a characteristic eddy which is distributed 
randomly in the homogeneous spatial directions (‘sprinkled ’ or ‘scattered ’) by the 
stochastic process a,. However, the Fourier transform of $1’) obtained from (4.1) and 
(4.2) has arbitrary amplitude (set arbitrarily by the normalization condition in (4.2)) 
and phase, and is therefore inappropriate as a characteristic eddy. 

To determine these quantities for the characteristic eddy (q5:), we seek a 
generalized shot decomposition of uil), 

u / ~ ) ( x , ~ ,  Z) = q 5 ~ ( ~ - - ~ ’ , y , z - ~ ’ ) g ( x ’ , ~ ’ ) d x ’ d ~ ’ ,  (4.6) J 

I 

where the magnitudes and phases of the characteristic eddy are determined by some 
objective criteria, and g is the stochastic ‘sprinkling ’ process. The characteristic eddy 
#; can be related to q5$’) in (4.6), and g can be related to a, by the following 
relations : 

$ ; ( x , ~ , z )  = #:’)(X-X’,~,Z-Z’) f(x‘,d)dz’dz’, (4.7a) 

(4.7 b)  and a,(x,z) = Sf(x-x’,i-z‘)g(x’,i’)dx’dz’, 

where f is a deterministic function. Equation (4.7b) can also be interpreted as a 
generalized shot decomposition of the homogeneous stochastic process a,. There are 
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several subtleties to the decomposition (4.6) and the criteria by which the Fourier 
magnitudes and phases of q5; are determined. I n  particular, there are many criteria 
that could be used to define the decomposition, so that this decomposition is not 
unique. The criteria actually used to obtain the results presented in $ 5  are discussed 
briefly in the following paragraphs ; the Appendix contains further discussion of this 
subject. 

To determine the magnitudes of the Fourier coefficients off and therefore @, we 
require that g is 'white' in the sense that the integral of g in non-overlapping 
intervals is uncorrelated (Lumley 1981). This property determines the second-order 
statistics of the process g, which is assumed to  have zero mean: 

(g(z, z ) g ( d , z ' ) )  = S(z-x',  z - z ) ) ,  ( 4 . 8 ~ )  

and <i (k , ,  k, ) i*(kL,  k:)) = S(k,-kL, k, -k: ) .  (4.8b) 

Obviously, g could be multiplied by any constant, which would only change the 
scaling off. Other conditions on g or f are possible (see the Appendix) ; however, this 
is an appealing choice, since it makes the second-order statistics of g primitive. The 
function f then carries the second moment of a,, 

(a,(%, z )  a,@+ Sx, z+ Sz))  = f ( x ,  z )  f ( z  + dz, z+ Sz) dzdz. (4.9) s 
Taking the Fourier transform and recalling (4.3b), the spectrum off is obtained: 

Ifikz, k,)I2 = W k , ,  k,). (4.10) 

The Fourier magnitudes of f and therefore & are thus determined ; however, the 
phases off cannot be, determined from the second-order statistics of g and a,. 

Though the phases do not affect the contribution of the characteristic eddies to 
second-order statistics, they do determine the physical structure of the eddies. 
Results shown in $5 use three different methods to  find the phases. The first method 
makes use of the third-order statistics of the stochastic processes a, and g, as 
suggested by Lumley (1981). In  the second method, the characteristic eddy is 
required to be compact in space in a sense to be discussed below. The third method 
makes use of the fact that for continuous wavcnumbers (infinite computational 
domain), it is expected that the Fourier components of q5: would be continuous 
functions of the wavenumbers. These methods are discussed below. 

4.1. Phase determination from the bispectrum 
To make use of the third-order statistics of a, and g we follow Lumley (1981) and 
consider the bispectrum. The bispectrum of a stochastic process g, B,, is the Fourier 
transform of the three-point correlation function, R, (see Lii, Rosenblatt & Van Atta 
1976; Van Atta 1979; Elgar & Guza 1985). We have 

R g ( r $ J ; > r C , ~ ; )  = <g(x,zlg(x+r,, Z+r,)g(x+rj, z+.:,>, (4.11 a)  

and B,(k,, k:, k,, k:) = <i (k ,>  k,) i(kL k:) i* (k ,+  &, k, +kl)). (4.11b) 

Using the Fourier transform of (4.7b) and (4.10), the bispectrum of a, and that of g 
can be related : 

Bal(kz ,G,kz ,k i )  = B,(k,,G, k,,k~)[h"'(k,,k,)h'l)(k~,Ic~)h(')(k,+k~,k,+k~)]~ 

x exp {i[O(k,, k,) + O(k:, k:) - O(k, + k:, k, + k;)]}, (4.12) 
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where 8(k,, k,) is the phase offik,, k,) (i.e. f ik , ,  k,) = [h(')(k,, k,)]iexp [iO(k,, k,)]). We 
would like to require that Bg be a real positive constant. This is analogous to the 
'whiteness' property imposed on the second-order statistics of g ,  and implies that g 
has primitive third-order moments in the sense discussed above (see the Appendix for 
further discussion). It is not possible to impose this condition however, because (4.12) 
completely determines the magnitude of Bg for all wavenumbers, and BB will not in 
general be constant. The condition that Bg be real and positive requires that 

w,, k:, k,, 4 = 8(kZ7 k,) + qk:, kl) - w, + k:, k, + k;), (4.13) 

where ~ is the phase of B,,, which would allow the determination of the phases 8. 
However, in general, (4.13) has no solution since it represents order-N2 equations for 
the order-N unknown 8 values, where N is the total number of Fourier modes. Instead 
we shall require that (4.13) be satisfied approximately. This problem is encountered 
in optics, seismology and signal analysis (Bartelt, Lohmann & Wirnitzer 1984; 
Matsuoka & Ulrych 1984), and a variety of solution techniques have been proposed. 
For the results presented in $5, equation (4.13) was solved in a weighted least-squares 
sense, where the weights are taken to be the magnitude of the bispectrum of 
a,. However, for the two-dimensional decomposition, the phases were constrained to 
take on values of 0 or R (see below). 

For two-dimensional decompositions (y and z ) ,  the symmetries of the flow result 
in a simplification of the bispectrum. The symmetries of Gtj shown in (2.5) and (2.6b) 
imply in the two-dimensional case that 

@$j(y? y', '2) = f @$(!/? y', ' Z ) 7  (4.14) 

where the plus and minus signs are as in (2.6b). This implies that @$, is strictly real 
unless i = 3 o r j  = 3 (but not both), in which case it is pure imaginary. This in turn 
implies that the eigenfunctions $&, k,) are strictly real for i = 1,2 and pure 
imaginary for i = 3. To compute the bispectrum of a,, the realizations of a, must be 
determined from u ;  this is done by using (4.3~) and the orthogonality of the 
eigenfunctions to obtain 

(4.15) 

It is easily shown that when (4.15) is used to compute a, from the velocity field and 
ui from the z-reflection of the velocity field (as discussed in $2), the special properties 
of the eigenfunction discussed above imply that 

d , (k , )  = ci;*(k,). (4.16) 

The bispectrum of a, can be expressed as 

Bal(k,, 4) = <4(kz) &I(%) ST(k+ %)). (4.17) 

The ensemble in this average includes velocity fields and their z-reflection as 
discussed in $2, which with equation (4.16) implies that the bispectrum B,, is re$. 
Referring to (4.12), it is easily seen that if the phase off is 0 or n for all k, (i.e. f is 
real for all k,), then the bispectrum of g will also be real for all k, and ki, as desired. 
Also, it is clear from (4.13) that if yk, is added to any solution for O(k,), it will remain 
a solution. This simply represents a shift of the c4aracteristic eddy in the z-direction. 
Thus the problem of finding the phases B(k,) off reduces to finding the sign off. In 
the weighted least-squares solution of (4.13), the values of 8(k,) are restricted to be 
0 or R, so that the bispectrum of g remains real. The least-squares problem reduces 
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to determining the sign of f i k , )  such that zkzk;Bg(k , ,  ki)lBal(k,, kL)/Bg(k,, kL)J is 
maximum. This was solved by a discrete steepest ascent algorithm. 

4.2. Phase determination from a compactness condition 
Given the magnitude of 4 as determined from (4.10), the phases can be determined 
by imposing a condition on q5: rather than g .  In  particular, we use the fact that when 
we speak of an eddy in a turbulent field, we mean a structure that is compact in 
space. This requirement of spatial compactness is one of the reasons the Fourier 
functions were rejected as characteristic eddies. The compactness of the characteristic 
eddy is very sensitive to the phases 8, so a compactness requirement can be used to 
determine the phases. This reasoning was employed by Herzog (1986). However, the 
compactness of a structure in space is difficult to define precisely. Instead, we 
consider some quantity of interest (e.g. one of the velocity components of the 
characteristic eddy) and determine the phases 8(k , ,  k,) to maximize the maximum 
value of its integral over y .  Such a requirement leads to a structure that is compact 
in space. To see why this is so, let I(x, z )  be the integral of the quantity of interest in 
y. We define an integral area scale S12(5,~)dxdz/12(0,0), which is a measure of the 
area in the x- and z-directions over which I is significantly non-zero. The integral in 
the numerator is independent of the phases of the Fourier coefficients of I ,  and is 
therefore independent of #(k,, k,) ,  if we consider quantities that are linear in the 
characteristic eddy velocity. Therefore, when the magnitude of I (0 ,O)  is maximized, 
the area scale is minimized and the characteristic eddy is compact. 

It is easy to show that this compactness condition is satisfied when the Fourier 
coefficients of the integral in y of the quantity of interest are real and positive for all 
wavenumbers. One could also define a compactness condition based on the value of 
a quantity of interest at, a given y-location. The integral condition stated above is 
used to avoid the need to specify the y-location. In the results shown in $ 5 ,  the 
compactness condition based on both the streamwise velocity u and the normal 
velocity v were used. In principle, the spanwise velocity w could also be used. 
However,A the syymetries of Qij (see $82 and 4.1), imply that for $, = 0, either d3 
or both q51 and q52 are identically zero. For all cases considered, q53 was zero so a 
compactness condition based on w would have left the phas2s of the k, = 0 modes 
undetermined. For some higher eigenfunctions, it is and q5* that are zero so a w 
compactness condition would be appropriate for them. 

4.3. Phase determination from wavenumber continuity 
Finally, we expect that if the wav$numbers are continuous, corresponding to an 
infinite domain in x and 2, then q5F(kz,kz) will be a continuous function of the 
wavenymbers. Thus for the discrete wavenumbers in the computation, we expect 
that q5;(kx,kz) will not be very different for neighbouring wavenumbers. This 
expectation can be enforced to determine the phases 8(kx ,  k z ) .  For ease of exposition, 
the procedure by which this is accomplished will be described for the two- 
dimensional ( y  and z )  decomposition in which &' depends only on k,. A similar though 
more complicated procedure is possible in three dimensions. The similarity of the 
eigenfunctions for neighbouring wavenumbers k,, and k,j+l results in the magnitude 
of the integral 

(4.18) 
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being nearly unity. The phasesAO(k,) are set such that the integral (4.18) will be real 
and positive, which results in 4: for neighbouring wavenumbers being as parallel as 
possible. This procedure leaves an overall phiye undetermined, which is set (except 
for an overall sign) by the requirement that $F(k, = 0) is real (i.e. O(0) = 0) ,  which is 
necessary for 4: to be real. The result of this specification of the phFses will be called 
the zero-phase eddy because for all wavenumbers, the phases of 42 are the same in 
the sense just described. 

4.4. Overall algorithm 
A step-by-step description of the algorithm used to obtain the characteristic eddy 
given the two-point spectral-density tensor is presented here. These steps are those 
required to implement the u-compactness criteria, the other phase recovery 
techniques are similar. 

(1) The matrix A (equation (3.9)) representing the numerical approximation of 
the integral in (4.1) is formed and symmetrized for each wavenumber. 

( 2 )  The eigenvalues and eigenvectors of A are obtained. 
(3) For each wavenumber the eigenvector associated with the largest eigenvalue 

is selected. 
(4) The eigenvector is scaled so that its energy (computed as JD & d,* dy, with the 

integral approximated by the trapezoidal rule) is equal to the associated eigenvalue. 
(5) Tbe eigenvector is multiplied by the complex quantity y* / IyJ ,  where 

y = I D  dy. Again the integral is approximated using the trapezoidal rule. 
(6) Once steps (11-15) are completed for each wavenumber, the eigenvectors are 

treated as the Fourier transform of a velocity field. The inverse Fourier transform in 
x and z is computed to obtain the physical-space representation of the eddy. 

5. Characteristic eddies in multiple dimensions 
In this section, the decomposition discussed in $$3 and 4 will be applied in both two 

and three dimensions. We consider the two-dimensional case separately because, as 
discussed in $4.1, we shall require the bispectrum, and only in the two-dimensional 
case do we have a sufficient statistical sample to obtain a reliable estimate of this 
quantity. In the two-dimensional case we wish to  extract the dominant eddy as 
viewed in planes perpendicular to both the wall and the flow direction (y, z-planes). 
The relevant laboratory experiment would be to  illuminate a (y, 2)-plane with a light 
source in a smoke-filled channel flow and to identify characteristic eddies in this 
plane. For the two-dimensional case, (4.1) reduces to 

(5.1) s, @ij(Y> Yl, k,) d?(Y!, k,) dy = 4 k , )  kZ)> 

where the two-dimensional is the Fourier transform of R, (equation (2.1)) with 
rz  = 0. The eigenvalue problems (equations (4.1) and (5.1)) are solved numerically for 
each wavenumber using the method outlined in $3  (recall that the computation of 
the channel flow was done in a finite domain with a finite resolution so there are a 
finite number of discrete wavenumbers). 

5.1. Contributions to second-order moments 
The properties of the inhomogeneous decomposition developed in $ 3 can be extended 
immediately to the multiple-dimension case. In  particular the contributions of the 
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- 

Domain Dimensions E ( l ) / E  E @ ) / E  EW/E EW/EW mU/p(t) 

O Q y + Q 4 0  2 0.64 0.17 0.07 3.8 1.05 

0 < y+ < 180 2 0.38 0.16 0.09 2.3 0.77 
O Q Y + Q 4 0  3 0.76 0.12 0.06 6.0 1.04 

140 Q y+ Q 180 3 0.57 0.22 0.12 2.5 1.53 
0 Q y+ Q 180 3 0.50 0.16 0.08 3.1 0.75 

TABLE 2. Contributions of the two- and three-dimensional eigenfunctions to energy and 
production 

140 < y+ < 180 2 0.46 0.24 0.18 1 .9 1.55 

.. 

1 oo 10' 

kz 

FIQURE 4. Eigenvalue spectra for the two-dimensional case, (a) near-wall domain and ( b )  wall-to- 
centreline domain : -, first eigenvalue ; - - - - - - - - , second eigenvalue ; ---, third eigenvalue. 

eigenfunctions to second-order statistics can be determined (independent of the 
phases) : 

( 5 . 2 4  (u,u,) = c ( u i n ) p >  = x x c h'n'(k,, k,) $iW,, y ,  k,) $jIE)*(kZ, y ,  kz), 
n n * x  k z  

and (5 .2b)  

For the two-dimensional case, the sums with respect to k, and the dependence on 
k, are not present. In table 2 the contribution of the first three characteristic eddies 
to turbulent kinetic energy (E'") = CkZ, kr h(")(k,, k,)) are shown for the same domains 
its in $3, for both two- and three-dimensional cases. Again, as an indicator of the 
contribution of the dominant eddy to turbulence production the quantity 17(l)/P@) 
is also tabulated, where 

17'" = C C p" A(')(kZ, k,) &)(kx,  y ,  k,) &*(k,, y ,  k,) dy (5.3) 
k x k z  y1 

and P(t) is defined in $3. 
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FIQURE 5. Eigenvalue z-spectra for the three-dimensional case, (a) near-wall domain and ( b )  wall- 
to-centreline domain : -, first eigenvalue ; - - - - -  - - -, second eigenvalue ; _--, third eigenvalue. 
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FIQURE 6. Eigenvalue s-spectra for the three-dimensional case, (a) near-wall domain and ( b )  wall- 
to-centreline domain : -, first eigenvalue ; - - - - - - - - , second eigenvalue ; ---, third eigenvalue. 

As in the one-dimensional case the dominant eddy makes a significant contribution 
to  turbulence kinetic energy and production. The contribution of the dominant eddy 
to turbulent kinetic energy is somewhat higher than in the one-dimensional case, and 
is higher in three dimensions than in two dimensions. Note also that, as in the one- 
dimensional case, the energy contribution of the dominant eddy is much greater for 
the near-wall domain than for the same size domain at the centre of the channel. This 



Characteristic-eddy decomposition of turbulence in a channel 49 1 

loo 
L 

10.' 

E 1 0 - 3  

10-4 ! 
10-5 

100 
c 

lo-' E 

p 

E 10-3 

10-4 

10-5 

lo-' 

10-7 I I I l l l l l l  I I I 1 1 1 1 1 1  1 

1 O0 10' 102 

kz 

FIGURE 7 .  Contributions to the z-energy spectrum of the first eigenfunction (a), and second 
eigenfunction (0) at (a) y+ = 1.5, ( b )  y+ = 10 and (c) y+ = 40 for the two-dimensional case in the 
near-wall domain (y' < 40). 

again suggests that the near-wall turbulence is more organized than that away from 
the wall. 

The spectra of the first three eigenvalues for the wall layer (y' ,< 40) and the 
domain extending from the wall to the centreline are shown in figure 4 for the two- 
dimensional case and figures 5 and 6 for the three-dimensional case. In both two and 
three dimensions, the z-spectrum of the dominant eigenvalue in the wall layer shows 
a pronounced peak a t  the non-dimensional wavenumber k,S = 7.5, which corre- 
sponds to the wavelength A: = 150. The higher-order eigenvalues have no such 
peak, and do not show a shift to higher k, values as would have been expected if small 
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FIQURE 8. Contributions to the z-energy spectrum of the first eigenfunction (IJ), and second 
eigenfunction (0) at (a) y+ = 5.4, (b)  y+ = 40 and (c) y+ = 91 for the two-dimensional case in the 
well-to-centreline domain (y' < 180). 

vertical scales were associated with small horizontal scales. The 2-spectra for the 
three-dimensional case fall off monotonically, similar to the streamwise turbulent 
kinetic energy spectra (see Kim et aZ. 1987). 

For the two-dimensional case, the contributions of the first two eigenfunctions to 
turbulent kinetic energy spectra, 

E(n)(kz,  y) =flln'(k,, y)fln)*(kz, Y) = h'n'(k,) $l"'(y, k,) $l@*(y, u, (5.4) 

a t  selected y-locations are shown in figures 7 and 8 for the near-wall and the wall- 
to-centreline domains respectively. At most y-locations the contribution of the 
dominant eddy is larger than the second eigenfunction at low wavenumbers and 
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smaller a t  high wavenumbers. An exception is shown in figure 8 ( a )  where the second 
characteristic eddy is in fact more energetic than the dominant eddy at the lowest 
wavenumbers. The higher-order eigenfunctions are associated with smaller scales in 
the y-direction but not necessarily with smaller scale motions in the z-direction. Note 
that the decomposition theorem requires that a t  any wavenumber the integral of 
E(’) over y be larger than that of E(2) .  These integrals are of course equal to respective 
eigenvalues plotted in figure 4. 

The spectra of the dominant eigenfunctions are broadbanded, but as expected are 
confined to a narrower range of energetic wavenumbers than the velocity spectra (see 
Kim et al. 1987). Fourier decomposition of structures confined to a finite region in 
space leads to broadband spectra such as those shown in figures 7 and 8. Spectra with 
very pronounced peaks result from distinct Fourier modes which, in contrast to 
compact eddies, extend indefinitely in space. 

The spectra in figures 7 ( c )  and 8(b )  turn up slightly a t  high wavenumbers, while 
the spectra in figure 8 (c)  are very noisy at high wavenumbers. The noise in figure 8 (c)  
is caused by round-off error. The data used in these decompositions was stored with 
seven digit accuracy, thus when spectra fall off by more than six or seven orders of 
magnitude, noise as in figure 8(c )  is expected. The up-turns in figures 7 ( c )  and 8(b )  
are caused by the finite resolution of the simulations. In the simulations, the 
dynamics of the highest wavenumbers are not well represented because of the 
presence of the resolution cut-off. These anomalies in the spectra should have little 
or no affect on the simulations or the decompositions since they represent an 
insignificant amount of energy. 

5.2. Characteristic eddies in the (y, 2)-plane 

We now turn to the problem of finding the two-dimensional characteristic eddy 
q5:. The magnitudes of the Fourier coefficients off,  as defined in (4.71, are found 
from (4.10), which in two dimensions reduces to 

To obtain the phases off”, we consider the three techniques discussed in $4: the 
bispectrum, compactness and continuity in wavenumber space (zero-phase eddy). 

The bispectrum of a, (a real quantity) is plotted in figure 9 ( a )  for the near-wall 
domain, the bispectra for the other domains are similar. In  all three domains the 
bispectrum is positive over almost the entire wavenumber domain, there are only 
small negative regions along the axes where either k,, k; or k,  + k; is zero. Because the 
bispectrum of a,  is positive almost everywhere, the solution to the least-squares 
problem discussed in $4.1 is not significantly different from the zero-phase eddy on 
which the sign of Ba, is based. In  fact there is only a difference between the zero-phase 
eddy and the bispectrum-derived eddy for the near-wall domain (0 < y+ < 40), and 
it turns out that the difference is a t  only one wavenumber. With f defined by the 
approximate solution of (4.13), the bispectrum of g can be computed, and is shown 
in figure 9(b )  for the near-wall domain. In  all three cases, the bispectrum is again 
positive almost everywhere, as we require. 

Two compactness conditions have been used to determine the phases off. They 
require that for i = 1 and 2 the integrals J q5:(y, z )  dy obtain their maximum possible 
value somewhere in the domain ; in particular we choose that they be maximized at  
z = 0. These are the u- and v-compactness conditions respectively. It is interesting 
that for the two domains including the wall (y’ < 40 and y+ < 180), the %L 

compactness condition is satisfied by the zero-phase eddy, though the v-compactness 
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condition is not. In  the other domain (140 d y+ < 180) the w-compactness condition 
but not the u-condition is satisfied by the zero-phase eddy. Note, that the w- 
compactness condition is not considered, as discussed in $4.2. 

We now turn to the structure of the characteristic eddies in two dimensions. 
Figures 10 and 11 show the characteristic eddies with phases determined from the 
zero-phase condition. In  the wall domain (y' < 40) the characteristic eddy consists 
of a narrow intense region of low streamwise velocity, which is about 50 wall units 
wide. There is also a very narrow (25 wall units) region of intense velocity away from 
the wall. The velocity vectors projected into the (y, 2)-plane show that a t  the top of 
the domain there is a weak flow away from the centre of the jet, making a 
vortex. 

In the wall-to-centreline domain (y' < 180) the Characteristic eddy consists of low 
streamwise velocity with normal velocity away from the wall, similar to that in the 
near-wall domain. Near the wall the widths of these regions are the same as in the 
wall domain. Away from the wall, these regions become diffuse. Near the wall, the 
velocity vectors reveal a pattern similar to the near-wall domain, although the centre 
of the circulation region is somewhat higher than in the near-wall domain. 

In  both the near-wall domain (y' < 40) and the wall-to-centreline domain, the 
characteristic eddy consists of an ejection and the accompanying low-speed region. 

FIGURE 9 ( a ) .  For caption see facing page. 
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FIGURE 9. Contours of the bispectrum of (a) the process a, (see (4.3)), and (b) the process g (see (4.6)) 
in the near-wall domain (y' ,< 40). k, and ki are zero in the centre of the plot. Dashed contours are 
negative. Contour increment is (a) (b) 0.05. Note the twelve-fold symmetry of the bispectrum 
function. 

If the sign of 4: were reversed the eddy would represent high-speed fluid moving 
towards the wall (sweep). The overall sign of the eddies is chosen for consistency with 
the bispectrum-derived eddy since the compactness conditions and the zero-phase 
condition leave the overall sign undetermined. The results of quadrant analysis in 
this flow indicate that ejections should be dominant far from the wall while sweeps 
are dominant near the wall (Wallace, Eckelmann & Brodkey 1972). Quadrant 
analysis indicates that the cross-over point for the dominance of sweeps and ejections 
is a t  y+ x 12-15. The sign of the eddy is determined from third-order statistics, which 
also indicate the change in dominance from sweeps to ejections. In particular, the 
skewness of u goes from positive to  negative at  y+ x 15 (Kim et al. 1987). Thus, even 
in the near-wall domain (y' < 40), ejections are dominant for a majority of the 
domain, explaining the ejection characteristic eddy in the near-wall domain. To test 
these arguments, the characteristic eddy was computed in the domain y+ < 10. The 
resulting eddy represented sweep motion as expected. 

Another interesting aspect of these characteristic eddies is that the magnitudes of 
the velocities are quite large. For example, in the near-wall domain the maximum 
(most negative) u-velocity is - 16 (normalized by u7) as compared to the maximum 
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FIGURE 10. Two-dimensional zero-phase characteristic eddy in the near-wall domain (y' < 40), (a )  
contours of u and ( b )  velocity vectors projected into the (y, %)-plane. Contour increment in (a )  is 1. 
Negative contours are dashed. 

r.m.s. value of about 2.7. Note that the integral of the characteristic-eddy velocity 
over z is a substantial fraction of the r.m.s. velocity fluctuation, and the characteristic 
eddy is confined to a relatively small region, resulting in the large local velocities 
observed. 

The characteristic eddies just considered satisfied one of the two compactness 
conditions discussed above (the u-condition) as well as the zero-phase condition. 
Characteristic eddies satisfying the w-compactness condition and the bispectrum 
condition have also been generated and are nearly indistinguishable from figures 10 
and 11.  The main difference is that the maximum value attained by u is slightly 
smaller (9% in the near-wall domain) and the maximum value attained by w is 
slightly larger (6 % in the near-wall domain). The reason for this similarity is that the 
differences between the criteria are either in the higher wavenumbers (k, > 50) where 
the spectrum has already fallen off significantly (see figure 4), or there is a difference 
at  only one or two wavenumbers. 

To evaluate the extent to which the characteristic eddy is observable, an 
instantaneous velocity field has been examined for structures. To find the locations 
of events corresponding to the characteristic eddy, sample functions of g(z)  have been 
computed for the near-wall domain from the sample functions of a, using (4.7b).  An 
example obtained a t  a particular x and time is given in figure 12(a), which shows a 
large isolated positive excursion of g from zero at about z = 3.18. This should 
correspond to a structure similar to the characteristic eddy. A vector plot of the 
velocity in the (y,z)-plane centred a t  this location is shown in figure 12(b) for 
comparison with figure l O ( b ) .  As in the characteristic eddy, there is a large 
streamwise vortex to the left of the domain, with a flow away from the wall at the 
centre of the domain. The shape of this vortex is somewhat different from the 
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FIGURE 1 1, Two-dimensional zero-phase characteristic eddy in the wall-to-centreline domain 
(y' < 180), (a)  contours of u and (b )  velocity vectors projected into the (y, 2)-plane. Contour 
increment in (a)  is 1 .  Negative contours are dashed. 
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FIGURE 12. (a) Sample functions of the g-process (see (4.8)) from the two-dimensional decomposition 
in the near-wall domain. ( b )  Velocity vectors projected into the (y, 2)-plane of the instantaneous 
velocity in the plane from which the sample function of g shown in (a) was taken. The plot domain 
is centred on the large peak in g appearing at  z = 3.16. 

vortices in the characteristic eddy. The major difference between the instantaneous 
structure and the characteristic eddy is the lack of a counter-rotating partner in the 
instantaneous field. It is important to note that the appearance of counter-rotating 
pairs of vortices in the characteristic eddy is a consequence of the symmetries in the 
statistics and the techniques by which the phases were determined, and does not 
imply that such pairs are prevalent in the instantaneous fields. Thus, the major 
difference in this case is due to this 'artificial ' symmetry imposed on the characteristic 
eddy (see $6 for further discussion of this point). 

5.3.  Characteristic eddies in three dimensions 
In three dimensions we must determine the function f(x, x )  as defined in (4.7). When 
g satisfies (4.8), the magnitude of the Fourier coefficients off are 

The phases of !were determined by the compactness conditions discussed in $4 and 
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FIQURE 13. Contours of 4; for the three-dimensional zero-phase characteristic eddy in the near-wall 
domain (y' < 40). (a) (y, 2)-plane at x = 0, (b )  (x,y)-plane at z = 0, (c) (x, 2)-plane at y+ = 10. 
Contour increment is (a) 7, ( b )  7, (c) 5. Negative contours are dashed. 

the zero-phase condition. The bispectrum is not used in the three-dimensional case 
because the statistical sample available did not allow it to be accurately estimated. 
In the two-dimensional case the compactness and bispectrum conditions produce the 
same results, but it is not clear that this would occur innthree dimensions. 

In  addition to the zero-phase condition, the phases off have been chosen to make 
the maximum values attained by J- &(x, y, z) dy as large as possible for i = 1 or 
i = 2, resulting in u- and v-compactness conditions. Unlike the two-dimensional case, 
the zero-phase characteristic eddy does not satisfy either of these compactness 
conditions. There is very little difference in the structure of the characteristic eddy 
between the two compactness criteria for the near-wall domain, but the magnitude of 
the maximum values of the velocities do differ. There are some discernible differences 
between the zero-phase eddy and the eddies derived from the compactness criteria 
in the wall-to-centreline domain ; these differences are also discussed below. 

Contours of the streamwise and normal velocity components for the zero-phase 
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FIGURE 14. Contours of 4; for the  three-dimensional zero-phase characteristic eddy in the near-wall 
domain (y' < 40). (a )  (y, 2)-plane at z = 0, (b )  (z,y)-plane at z = 0, (c )  (z,z)-plane at y' = 10. 
Contour increment is (a) I ,  ( b )  1, (c)  0.6. Negative contours are dashed. 

eddy are shown in figures 13 and 14 for the near-wall (y' < 40) domain. Shown are 
contours in the (y,z)-plane a t  z = 0, the (z, y)-plane at z = 0 and the (x,z)-plane a t  
y+ x 10. The location x = 0, z = 0 is where both the streamwise and normal velocities 
attain their maximum values, and can therefore be regarded as the centre of the 
eddy. In  the near-wall domain the (y, 2)-contours reveal a region of low streamwise 
velocity approximately 50 wall units wide and coincident with a region of strong 
velocity away from the wall. This is consistent with the two-dimensional results, The 
(x, yf-contours show that the low streamwise velocity region extends 250 wall units 
upstream of z = 0 near the wall, decreasing to as little as 60 wall units upstream a t  
y+ = 40. In  contrast, the downstream extent of the low velocity region (150 wall 
units) does not decrease away from the wall. The region of intense vertical velocity 
has a streamwise extent of less than 100 wall units in the upstream and downstream 
directions. This is also evident in the (x, 2)-contours in the plane a t  y+ = 10. 

Contours for the u-compactness condition characteristic eddy in the wall-to- 
centreline domain are shown in figures 15 and 16. The v-compactness condition plots 
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FIQURE 15. Contours of & for the three-dimensional u-compactness characteristic eddy in the wall- 
to-centreline domain (y' < 180). (a)  (y, 2)-plane at x = 0, ( b )  (x, y)-plane at z = 0, (c) (x, +plane at 
y+ = 10, (d )  (z,z)-plane at y+ = 95. Contour increment is (a+) 5, (d )  1 .  Negative contours are 
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FIQURE 16. Contours of q5: for the three-dimensional u-compactness characteristic eddy in the wall- 
to-centreline domain (y+ < 180). (a) (y, %)-plane at z = 0, ( b )  (z, y)-plane at z = 0, (c) (5, 2)-plane at 
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dashed. 
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are similar, except for the magnitudes of the velocities. As in the two-dimensional 
case, the near-wall region of the characteristic eddy in the wall-to-centreline domain 
is remarkably similar to that in the near-wall domain. Contours in the (y, 2)-plane in 
figures 15 and 16 indicate that the region of low streamwise velocity and flow away 
from the wall are diffuse far from the wall, having a z extent as much as three times 
that near the wall. However, in the (x,y)-plane, it is seen that these regions have 
smaller streamwise extents far from the wall than near the wall. Far from the wall, 
the low streamwise velocity region has an extent of about 100 wall units, as does the 
region of high vertical velocity. Contours of u and v in the (x, z)-plane at y+ = 95 
reveal that, upstream of x = 0, the highest values of u and v occur off the z = 0 axis. 
This is related to the pair of streamwise vortices in the characteristic eddy, since 
above these vortices, the maximum normal velocity does not occur on the midplane 
between them, but to the sides. The zero-phase characteristic eddy has also been 
computed ; the major difference between it and the u-compactness eddy in figures 15 
and 16 is the vertical location of the streamwise vortices (see below). 

Figure 17 contains plots of the velocity vectors projected into (y, 2)-planes located 
a t  x+ = 0, & 18 and & 36 for the zero-phase eddy in the near-wall d m a i n .  The plane 
a t  x = 0 reveals a pair of counter-rotating vortices straddling the region of strong 
ejection from the wall. In the wall-to-centreline domain, a similar set of streamwise 
vortices occur (not shown). The centres of the vortices in the near-wall domain at 
x = 0 are located a t  y+ = 25 and are separated by 35 wall units. Upstream of x = 0, 
the centres are closer to the wall, and downstream, they are farther away. At 
x+ = 36, the centres are beyond the edge of the domain. The y-location of the 
vortex centres is plotted in figure 18. Note that the angle of inclination of the vortex 
increases with downstream location. At X+ = -36 the angle is 10' while a t  x+ = 18, 
the angle is 31'. Upstream of x+ = -54 (plots not shown), the vortices are so weak 
that they are not discernible. Thus, in the wall region (y' < 40), the vortices have a 
streamwise extent of less than 100 wall units. This is consistent with the observations 
of streamwise vortices in instantaneous velocity fields made by Moser & Moin (1984), 
in which the vortices were observed to go beyond y+ = 40 in a very short streamwise 
distance (150 wall units). In  contrast, the streamwise vortices in the decomposition 
performed by Herzog (1986) were near the wall for a much longer streamwise 
distance (360 wall units), and had a nearly constant angle of inclination of 5'. The 
reason for this discrepancy is not known, but the poor streamwise resolution of 
Herzog's measured correlation tensor for moderate to large separations (see Q 1) is a 
potential cause. 

Moser & Moin (1984) observed that there were many more solitary vortices than 
vortex pairs in instantaneous flow fields. It may appear that there is a contradiction 
between the counter-rotating pair of vortices obtained by the decomposition and this 
prevalence of solitary vortices observed in instantaneous velocity fields. This is not 
the case. The technique outlined in 993 and 4 yields symmetric counter-rotating pairs 
of vortices, which are distributed through the homogeneous spatial directions by the 
sprinkling process g (see (4.6)). As was observed in figure 12, there is no difficulty in 
generating a solitary vortex from a collection of vortex pairs when they are 
distributed by the appropriate g-function. The fact that vortices are obtained by the 
current method indicates the importance (as measured by energy) of these vortices 
near the wall. The fact that a pair of vortices is obtained rather than a solitary vortex 
calls for improvement in the phase recovery technique. 

Also shown in figure 18 are the vortex-centre positions for the characteristic eddies 
in the near-wall domain based on the u and v compactness conditions, as well as 
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FIGURE 17. Velocity vectors for the zero-phase eddy in the near-wall domain (y' < 40) projected 
into (y, 2)-planes at  (a) x+ = -36, ( b )  xc = - 18, ( c )  zf = 0, (d )  z+ = 18 and ( e )  x+ = 36. 
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FIGURE 18. Vertical (y) location of the centre of the streamwise vortices as a function of streamwise 
distance (5) : , zero-phase eddy ; 0,  u-compactness eddy ; 0,  w-compactness eddy. Upper dashed 
curves are for the wall-to-centreline domain (y' < 180), lower solid curves are for the near-wall 
domain (y+ < 40). 

vortex-centre positions in the wall-to-centreline domain for all three phase 
determination methods. In  the near-wall domain, the compactness conditions result 
in very similar curves, while the curve for the zero-phase eddy is somewhat lower. In 
the wall-to-centreline domain, the vortices are seen to be much farther from the wall 
than in the near-wall domain. At x = 0 the vortex centres are a t  yi = 40 to 80, 
depending on the condition used to obtain the phase, while in the near-wall domain, 
the vortices were a t  y+ = 2CL30. The vortices resulting from the compactness 
conditions are farther from the wall than for the zero-phase eddy. As in the near-wall 
domain, the vortices are inclined at about 10' upstream of 2 = 0. Downstream they 
are inclined as steeply as 60". In  agreement with the near-wall result$, the vortices 
are not discernible far upstream of x = 0, and are near the wall for less than 100 wall 
units. Note that in both domains the vortices are far from the wall for x+ > 30, but 
in figures 14 (b)  and 16 ( b ) ,  there is significant ejection near the wall as far downstream 
as x+ = 180. Thus, the far downstream ejection is below the streamwise vortex pair 
but is not straddled by them. Also, the inclined vortices observed here are probably 
related to, and are certainly consistent with, the hairpin eddies investigated by Moin 
& Kim (1985). 

6. Conclusions 
The proper orthogonal decomposition technique has been applied to one-, two- 

and three-dimensional decompositions of turbulent channel flow. Velocity fields 
generated by direct numerical simulation (Kim et al. 1987) were used to  compute the 
full two-point velocity-correlation tensor, Ri,(r,, y ,  y', rz), for this purpose. The 
technique was used to extract energetic organized structures from turbulence. 
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Turbulent velocity fields were represented as a randomly weighted sum of the 
eigenfunctions of Rij.  The resulting characteristic eddies were found to contribute as 
much as 76% to the kinetic energy, and even more to turbulence production. Thus 
the characteristic eddy indeed has special significance. 

Several different techniques were used to determine the Fourier phase coefficients 
of the characteristic eddy, including bispectral analysis and compactness conditions. 
The results were qualitatively similar for all techniques ; however, there were 
quantitative differences such as the y-locations of the centres of streamwise vortices 
observed in the characteristic eddies. 

In the two-dimensional case (spanwise and normal to the wall), the characteristic 
eddies consisted of a narrow ejection region accompanied by a region of low 
streamwise momentum. These were straddled by a pair of weak counter-rotating 
vortices. It was found that characteristic eddies computed in the near-wall domain 
were very similar to the near-wall portions of the characteristic eddies computed in 
the full wall-to-centreline domain. 

Three-dimensional eddies were found to be similar to the two-dimensional eddies 
in that they consisted of an ejection straddled by weak streamwise vortices. The low- 
speed streak accompanying the ejection is about 400 wall units long and 50 units 
wide, while the region of strong vertical velocity is less than 200 wall units long. The 
counter-rotating vortices are inclined a t  10" near the wall and as much as 60' away 
from the wall, and have a streamwise extent in the near-wall region (y' < 40) of less 
than 100 wall units. It was noted that while the streamwise vortices occurred in 
pairs, this did not imply that vortex pairs were in fact dominant in the instantaneous 
fields since the pairs were a result of symmetries in the statistics and the techniques 
by which the phases were determined. In fact, as noted in $5, solitary inclined 
vortices rather than pairs are most often observed near the wall in instantaneous 
velocity fields (Moser & Moin 1984). 

The relationship of the characteristic eddies to structures observable in 
instantaneous flow fields is not clear, though it was demonstrated that the 
instantaneous structure associated with a large peak in the scattering function did 
have some qualitative similarity to the characteristic eddy. Presumably, the 
characteristic eddy represents some average of the most energetic events. It is clear, 
however, that if the stochastic velocity field is composed of a single structure 
distributed in the homogeneous directions by a known scattering process, then the 
technique would extract that structure. Also, if the proper orthogonal decomposition 
eigenfunctions are indeed dominant, and if the scattering process is an impulse 
process (see the Appendix) with not too densely spaced impulses, then the 
Characteristic eddies would be visible in the flow. 

The structures in the instantaneous velocity fields are evolving in time. 
Unfortunately the three-dimensional characteristic-eddy decomposition performed 
here does not recover these dynamics. An assessment of the role of the structures in 
the physics of near-wall turbulence requires some knowledge of their evolution. 
The treatment of the dynamics of structures obtained by characteristic-eddy 
decomposition is a topic of continuing research (e.g. Aubry et al. 1988). 

However, whether the characteristic eddy is actually found in the instantaneous 
flow field and if so at what frequency may not be the important question. If the main 
objective of a study of coherent structures is to find a decomposition of turbulence 
into deterministic and stochastic portions the characteristic-eddy decomposition is 
certainly the most efficient method in the sense that energy and Reynolds stresses are 
reproduced with the fewest number of terms ('eddies '). In  addition, governing 
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equations for the coefficients of the characteristic-eddy eigenfunctions can be derived 
from the Navier-Stokes equations, which is a useful point for theoretical 
development. Other decompositions are also possible, for example one could easily 
find the structures that are the most efficient contributors to the magnitude of 
vorticity fluctuations (Moser 1988). 

We are grateful to Drs Robert S. Rogallo and Sanjiva Lele for useful comments on 
a draft of this manuscript. 

Appendix 
In $4 it was shown that several quantities had to be specified to fully determine 

& in (4.6). In particular, the second-order moments of the stochastic process g were 
specified (equation (4.8)). To determine the Fourier phases we would have also liked 
to specify the third-order moments of g by requiring the bispectrum Bg to be a real 
constant. In this Appendix we examine the physical consequences of these 
specifications of the statistics of the process g. These statistical properties ((4.8), and 
Bg a real constant) are shared by many stochastic processes with vastly differing 
characters. In particular, processes that are independent on non-overlapping intervals 
satisfy these conditions. Two well-studied examples of such processes in one 
dimension (2) are the Gaussian white-noise process and the Poisson impulse process. 
Gaussian white-noise is a model for the velocity of a particle undergoing Brownian 
motion (note that Bg is zero in this case). The Poisson impulse process is the g process 
used by Rice (1944) in the ‘shot-noise’ decomposition. The Poisson impulse process 
can be written 

(A 1) g(z) = C 6(2 - z5) 
5 

(Papoulis 1965), where xj are random locations with uniform density along the z-axis. 
More specifically, the spacings between points are independent and exponentially 
distributed (this is necessary for the independent-intervals property). The sample 
functions of these two processes have greatly differing characters. Thus the lower- 
order statistical properties specified for g do not tell us very much about the sample 
functions of g. 

The Poisson impulse process is particularly interesting in connection with the 
current problem. If g in (4.8) is indeed an impulse process, then the stochastic process 
uil) can be interpreted as the sum of characteristic eddies q5: occurring at discrete 
random locations in the homogeneous directions. This is attractive since, if the eddies 
are not too close together, they would actually be observable in the realizations of 
uil), and perhaps in ui. It would thus be appropriate to require that g be an impulse 
process; that is, a process whose sample functions consist entirely of Dirac delta 
functions. An impulse process can be considerably more general than the Poisson 
process ; in one dimension, a more general impulse process is 

g(z) = C bja(x-xj), (A 2) 
5 

where the b5 are not necessarily independent random variables, and the spacings 
between neighbouring points xj are neither independent nor exponentially dis- 
tributed. If it is arranged so that this process is homogeneous (as we require), its two- 
point correlation function would be given as 

(gW g(x + r d )  = v ( b 2 )  + fJ(r,) R b ( T , ) ?  (A 3) 
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where v is the average density of points, S(rx)drx is the probability that there is a 
point in the interval (rx,rx+drx) given that there is point a t  0 ;  and Rb(rx) is the 
correlation of the strength b of two impulses separated by a distance r,. As was 
discussed in the previous paragraph the statistical conditions ((4.8), and Bg a real 
constant) are certainly not sufficient to guarantee that g is an impulse process, and 
(A 3) shows that they are not necessary either. Thus if our goal is to require that g 
be an impulse process, these specifications are not appropriate. 

In general, it is not possible to require that g be an impulse process and satisfy 
(4.8), except in the limit of impulses that are dense in x. It may however be possible 
to ask that g be an impulse process in some approximate sense. For example g in one 
dimension could be further decomposed to g(x) = gl(x) +g,(x), where g1 is an impulse 
process. This might be accomplished by requiring that 

be a minimum. This was done by Chambers (1987) for a very restricted class of 
impulse processes gl. There are difficulties with this minimization problem since it 
should always be possible to reduce the error (A 4) by increasing the average density 
of points in gl. However, allowing an arbitrarily large density of points is undesirable 
since the structures would then significantly overlap. It is also not clear how such a 
minimization might be accomplished in practice. 

Since we are interested in g being as close as possible to an impulse process, it  is 
interesting to see how well the sample functions of g determined from the conditions 
in $4 approximate delta functions. To this end, some sample functions of g(z)  from 
the two-dimensional case were computed from sample functions of a, using (4.7b). An 
example is shown in figure 12(a). The sample function is certainly not made up of 
delta functions. However, it does exhibit regions of intense activity separated by 
regions of relative calm, and there are occasional very large, short duration 
excursions. This gives some indication that a decomposition of g into an impulse 
process and a remainder as discussed above might be a viable approach. 
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